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ABSTRACT

 

Mapping of species distributions at large spatial scales has been often based on the
representation of gathered observations in a general grid atlas framework. More
recently, subsampling and subsequent interpolation or habitat spatial modelling
techniques have been incorporated in these projects to allow more detailed species
mapping. Here, we explore the usefulness of data from long-term monitoring (LTM)
projects, primarily aimed at estimating trends in species abundance and collected at
shorter time intervals (usually yearly) than atlas data, to develop predictive habitat
models. We modelled habitat occupancy for 99 species using a bird LTM program
and evaluated the predictive accuracy of these models using independent data from
a contemporary and comprehensive breeding bird atlas project from the same region.
Habitat models from LTM data using generalized linear modelling were significant
for all the species and generally showed a high predictive power, albeit lower than
that from atlas models. Sample size and species range size and niche breadth were
the most important factors behind variability in model predictive accuracy, whereas
the spatial distribution of sampling units at a given sample size had minor effects.
Although predictive accuracy of habitat modelling was strongly species dependent,
increases in sample size and, secondarily, a better spatial distribution of sampling
units should lead to more powerful predictive distribution models. We suggest that
data from LTM programs, now established in a large number of countries, has the
potential for being a major source of good quality data suitable for the estimation
and regularly update of distributions at large spatial scales for a number of species.
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INTRODUCTION

 

Knowing where a species occurs and recording changes in its

distribution has major implications in ecology, species man-

agement, and conservation planning (Araújo & Williams, 2000;

Bani 

 

et al

 

., 2002). This has led to many large-scale mapping or

atlas projects where the aim has been to document distributions

in a systematic manner, usually on a grid system. The greatest

development and application of atlas methodology has been

evident in the assessment of bird distribution (Donald & Fuller,

1998; Underhill & Gibbons, 2002). Historically, mapping of

species at large spatial scales has been based on the collection of

observations and their comprehensive representation on a con-

tinuous spatial grid. However, detecting species reliably requires

considerable effort (Kery & Schmid, 2005; McPherson 

 

et al

 

.,

2006), and atlas works commonly aim at covering large areas. A

trade-off is likely to appear between atlas spatial coverage and the

final effort to accurately cover it. In general, this compromise has

led to bird atlases being completed at considerable time intervals

(i.e. during 3–6 years) and repeated at long time intervals

(i.e. 20-year periods). Furthermore, the sampling procedure

conducted in atlas works usually gives complete coverage of the

study region but only describing presence–absence at relatively

coarse resolutions (Donald & Fuller, 1998). Traditional atlas

approaches often provide poor spatial information at small scales

(McPherson 

 

et al

 

., 2006). However, second generation atlases

have recently complemented the wide-covering, coarse-resolution

surveys with a more detailed subsampling within the main units

in order to gather information on the species distribution at

more local spatial scales (1 

 

×

 

 1 km or 2 

 

×

 

 2 km) to produce dis-

tribution/abundance maps at finer-scale resolutions (Gibbons

 

et al

 

., 1993; Schmid 

 

et al

 

., 1998; Johnson & Sargeant, 2002).
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In parallel to the constant improvement of atlas works, long-

term monitoring (LTM) projects have been developed with their

main objective being the estimation of temporal trends in abun-

dance, mostly for common and widespread species (Link &

Sauer, 1998). LTM programs are based on a network of sampling

locations where the relative abundance of a number of species is

recorded at given time steps (typically each year) and have been

implemented for birds across a number of countries, usually

using representative and well-designed sampling strategies

(Gregory 

 

et al

 

., 2005; Kery & Schmid, 2005).

Bird LTM programs provide us with a great deal of spatial data

that have the potential to be used to create maps showing

changes in species distribution and abundance (Jiguet 

 

et al

 

.,

2005), which may lead to a progressive convergence of objectives

between LTM and atlas projects [i.e. Breeding Bird Survey data

in North America (Price 

 

et al

 

., 1995)]. This convergence may

provide substantial advantages in terms of the periodicity of

produced maps because LTM is a data source that may be used to

update species distributions at shorter time intervals.

Two main different alternatives are available, permitting the

use of information gathered in a subsample of small spatial units

to map the species distribution in a continuous manner: inter-

polation techniques and niche or habitat-based models (Guisan

& Zimmermann, 2000). Atlas works have commonly used inter-

polation techniques which aim at estimating unknown data from

neighbour values (Gibbons 

 

et al

 

., 1993). This approach appears

as reasonable if data are spatially well distributed and the density

of locations high. However, this is often not the case in LTM pro-

grams, for which coverage is frequently less spatially exhaustive

than that used to obtain interpolated distributions in second-

generation atlas works. Therefore, in these cases surrogate en-

vironmental data may probably prove useful to estimate species

distribution beyond sampled locations. Recent developments in

numerical methods and increasing availability of digital environ-

mental data sources have boosted application of habitat-based

models in ecology (Guisan & Zimmermann, 2000; Guisan &

Thuiller, 2005). This approach is based on the hypothesis that if

species environmental associations can be robustly established,

one may use them to estimate species distributions through the

identification of suitable habitat in areas from which faunal data

have not been recorded but environmental information is available.

With the exception of few pilot methodological studies (Pearce

& Ferrier, 2001; Thogmartin 

 

et al

 

., 2004, 2006), habitat model-

ling has not been widely applied to LTM data. In this study, we

use data from a bird LTM program, the Catalan common bird

survey, to produce habitat-based maps and assess its predictive

accuracy using independent atlas data. It is important to stress

that predictive habitat modelling was used in our study with a

predictive rather than inductive goal. In such circumstances,

accuracy of model predictions is more important than signifi-

cance of particular ecological terms (Legendre & Legendre,

1998). We also investigated different factors that are known to be

related to the predictive accuracy of habitat models: the role of

sample size and the distribution of sample locations (Hirzel &

Guisan, 2002), and ecological factors (Brotons 

 

et al

 

., 2004;

Seoane 

 

et al

 

., 2005). We then derive recommendations on how to

use LTM data to map species distributions. To our knowledge

this is the first time that mapping from LTM data is extensively

used to generate habitat models from a large number of species

and evaluated using independent atlas data from the same area

(but see Carrascal 

 

et al

 

., 2006 for a similar approach at a regional

scale).

 

METHODS

Study area

 

Catalonia is a region situated in north-east Spain, comprising an

area of about 

 

c

 

. 32,000 km

 

2

 

, roughly the size of Belgium (Fig. 1).

The region is located in the Mediterranean Basin, and despite

its area, it is remarkably heterogeneous including a range of

landscapes from alpine habitats to coastal marshes and from

evergreen forests to steppes.

 

Catalan common bird survey (SOCC)

 

We used LTM data from the Catalan common bird survey

(SOCC, from the Catalan name ‘

 

Seguiment d’Ocells Comuns a

Catalunya

 

’), a project started in 2002. The SOCC is based on the

line transect approach (Bibby 

 

et al

 

., 2000) in which observers

record all individuals of all bird species sighted or heard on a 3-km

walked itinerary divided into three 1-km sections. In this study

we used 1-km sections as sampling units. SOCC transects are

visited twice during the breeding season, the first between 15

April and 15 May, and the second between 15 May and 15 June,

thus covering the periods of maximum activity of early and

late breeders and minimizing the presence of migrants (see

www.ornitologia.org).

There are two different types of SOCC transects according to

the criteria used in their selection: (1) priority transects (located

in a randomly chosen 10-km square within each of five biogeo-

graphically determined strata) or (2) non-priority transects

(located in a 10-km square freely chosen by the observer). These

two possibilities aim at attracting volunteers to the main areas

of interest without losing any possible contributor because of

distant or undesired census locations. At present 226 SOCC

transects (112 priority and 114 non-priority transects) have been

conducted at least in 1 year during the period 2002–2005 (Fig. 1).

The mean number of available years (maximum of 4 years) per

transect during this period was 3.01. We included in our study 99

species appearing in at least 10 different transects during the

2002–2005 period.

Since the SOCC program is essentially based on volunteer

observers, the survey is constrained by the number of available

sampling transects and is prone to poor spatial cover of remote

areas, resulting in, regionally, a biased sampling distribution

(Fig. 1). To investigate the potential effect of sample size and

sampling distribution on the performance of habitat modelling

using LTM data, we assessed the impact of varying sample set size

on the predictive power of habitat models on three different

scenarios of data partitioning. In the first scenario, we assessed

changes in predictive power by randomly selecting subsets (25%,
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50%, 75%, or 100%) of the complete data set of available 1-km

transect sections (RANDOM scenarios). In the second scenario,

we reduced sample sizes by reducing the total number of sections

from the most intensively sampled areas (SELECTIVE scenarios).

This was done by randomly selecting subsets of the data using

a probability function based on the distribution of priority

transects and the density of transect locations per county (Fig. 1).

Finally, we assessed the impact of varying field effort for the same

sample size on the predictive power using the entire transects and

not their sections as main sampling units for modelling

(EFFORT scenario). The EFFORT scenario results in more

intensive sampling effort per unit (mean values from a 3-km

transect vs. a 1-km section), but increases their spatial independ-

ence (larger mean distance between units). In this scenario, the

entire data set was reduced to separate 226 units (the number of

SOCC transects), and the overall available sample size is more

restricted than in the other two scenarios.

 

Catalan Breeding Bird Atlas (CBBA)

 

We used species occurrence from the Catalan Breeding Bird Atlas

(CBBA, Estrada 

 

et al

 

., 2004) as independent data to evaluate

predictive accuracy of habitat models based on SOCC data. The

CBBA is a large-scale survey that covered between 1999 and 2002

the whole of the Catalonia using a grid-based 10-km Universal

Transverse Mercator (UTM) squares. A subsampling of a total of

3077 1-km squares (approximately 9% of the total area) was

selected to conduct standardized intensive surveys of species

Figure 1 Maps showing the location of (a) Catalonia, (b) the location of the 226 transects of the Catalan Breeding Bird Survey (SOCC) 
conducted during the period 2002–05, and (c) the location of the 3077 1 × 1 km UTM squares surveyed during the Catalan Breeding Bird Atlas 
1999–2002. Map (b) also shows the different counties in which Catalonia is subdivided.
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presence in a stratified fashion to cover the main habitat types

present within each of the 10-km squares (Hirzel & Guisan,

2002).

We also used the CBBA data to investigate the role of species

range size and niche breadth in determining variability in model

predictive accuracy based on LTM data (Hepinstall 

 

et al

 

., 2002).

Species range size was estimated from the total number of UTM

10-km atlas squares in which the species was recorded (Estrada

 

et al

 

., 2004). We obtained a measure of niche breadth (habitat

amplitude) using the following procedure. First, we performed a

matrix of Pearson distances from species habitat selection pat-

terns presented in the CBBA (Estrada 

 

et al

 

., 2004). This was done

in order to estimate the ecological distance (

 

dist

 

(

 

hab

 

y

 

,

 

hab

 

x

 

))

between the habitats used in their study. Distances between

habitats were then weighted by the habitat preferences and

finally, niche breadth was calculated using all habitats in which

each species was present as:

Since species prevalence (proportion of occurrences in a sample)

has been shown to affect model predictive accuracy, some

authors have warned about the need to control for prevalence

when assessing the role of variables such as range size and niche

breadth on such measure (McPherson 

 

et al

 

., 2004). To allow the

independent assessment of prevalence from range size and niche

breadth, we conducted a Principal Component Analysis using as

original variables species niche breadth, range size (CBBA 10-km

squares), and the two highly correlated measures (

 

r =

 

 0.96) of

prevalence in our data sets (species prevalence in CBBA 1-km

squares, and in 1-km SOCC sections). After a varimax trans-

formation of the principal components maximizing their cor-

respondence to the original variables, we succeed to obtain three

independent components that were then used in further analyses:

(1) a niche breadth component positively associated to the original

niche breadth variable (

 

r =

 

 0.99), (2) a range size component

positively related to the number of 10-km squares occupied

by the species in Catalonia (

 

r =

 

 0.69), and (3) an independent

prevalence component separating species with low and high

prevalence values in the CBBA data (

 

r =

 

 0.95) and SOCC data

(

 

r =

 

 0.90).

 

Habitat-based models

 

We used 39 environmental variables for model building

(Appendix 1) which were generated from available digital layers

(see Brotons 

 

et al

 

., 2004; Estrada 

 

et al

 

., 2004). All environmental

variables were generated for each 1-km UTM square in Catalonia

and for 1 km

 

2

 

 buffers around the central point of each SOCC

section and if possible (i.e. land use maps), estimated from dif-

ferent data sources so that they better matched the sampling

periods of each of the surveys.

We conducted occupancy models using presence/absence data

over the 2002–2005 period from SOCC transect sections (SOCC

models) using generalized linear modelling with binomial error

distribution (GLM). GLM have been extensively tested elsewhere

and have proved robust in a number of independent situations

(Manel 

 

et al

 

., 1999; Pearce & Ferrier, 2000b; Osborne 

 

et al

 

.,

2001). We included as potential predictors in model building all

linear and quadratic terms. To select the most parsimonious

model using the Akaike Information Criterion (AIC), we applied

an automatic stepwise model-selection procedure starting from a

null model containing the intercept only (Chambers & Hastie,

1997). Quadratic terms were included only if they improved

their linear counterpart. We also included interactions between

environmental variables when their ecological interpretation was

highly justified (i.e. interaction between shrubs and precipitation

allowing to account for hypothetical wetness gradients in shrub

vegetation). The number of years that a SOCC transect was

surveyed was included as a covariable in habitat models to

correct for differences in sampling effort among transects.

 

Evaluation of habitat models

 

Results from probabilistic models may be judged as successful if

the predicted probabilities above a certain cut-off correspond

with observed occurrences, the values below the cut-off with

absences and the prediction errors (false positives and false neg-

atives) are low (Fielding & Bell, 1997; Pearce & Ferrier, 2000a).

Since the choice of an adequate cut-off may be problematic, we

use a more powerful approach based on the receiver operating

characteristic (ROC) plot which is based on a series of misclassi-

fication matrices computed for a range of cut-offs from 0 to 1.

The ROC curve then plots on the 

 

y

 

-axis the true-positive fraction,

against the false-positive fraction from the same misclassification

matrix (Fielding & Bell, 1997; Pearce & Ferrier, 2000a). The area

under the ROC curve (AUC) is a convenient measure of overall

fit and commonly varies between 0.5 (for chance performance)

and 1 (perfect fit).

For a given species and sampling scenario (RANDOM,

SELECTIVE, EFFORT), we calibrated 10 models by randomly

selecting an 80% of the available sections and then evaluated the

predictive accuracy of the models on independent field data.

Each of these independent tests measured predictive accuracy by

means of AUC on a different random selection of 30% of CBBA

data (1-km squares). Finally, the mean AUC of these 10 cases was

used as estimator of predictive accuracy per species and scenario.

We considered that CBBA occurrence habitat models (CBBA

models) can be currently used as the best models available for

each species in the region (Estrada 

 

et al

 

., 2004). Hence, for each

species, we also measured the disagreement between the predic-

tive accuracy of SOCC habitat models and the models obtained

in the context of the CBBA project. CBBA models used exactly

the same environmental variables used in this study to calibrate

SOCC models. However, the two kinds of models differed in that

CBBA models included a second modelling step that involved

adding spatial autocovariables to the best environmental model

previously selected (Augustin 

 

et al

 

., 1996). This allowed identify-

ing the best environmental model available given our predictors

and complementing those with information about the spatial

structure of the species data (i.e. spatial autocorrelation). CBBA

habitat model predictions were evaluated using a cross-validation

A Var
weighthab weighthab dist hab hab

weighthab weighthab
x y x y

x y

  
[  *  * ( , )] 

 * 
=
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procedure by randomly assigning 70% of occurrence values for

each species to a calibration data set, and the 30% of remaining

occurrences to an evaluation data set [the same number of cases used

in the SOCC model evaluation (Guisan & Zimmermann, 2000)].

 

Comparison of habitat models

 

We assessed how predictive accuracy of habitat models varied

between methods by means of repeated measures 

 



 

designs using model type as within-subject factors in the design

according to species, and the three components obtained from

the principal component analyses as continuous predictors.

When comparing models estimated from different sample sizes,

sample size category was considered as an additional within-subject

factor.

We also investigated discrepancies between SOCC and CBBA

model accuracy by means of GLM designs using as predictors

the ecological characteristics of the species and the amount of

variability explained by the CBBA models at each of the two steps

conducted (environmental and spatial, Estrada 

 

et al

 

., 2004). In

this way, we could assess whether differences in predictive ability

between the models were associated to species ecology per se or

to the potential of the models to adequately describe species habitat

with the variables employed.

 

RESULTS

Overall accuracy of SOCC models and comparison 
with reference CBBA models

 

Overall model accuracy estimated with the SOCC data performed

better than random in all the species analysed (Appendix 2).

Furthermore, the evaluation of their predictive accuracy on in-

dependent atlas (CBBA) field data provides acceptable to excellent

results (AUC values significantly different from 0.5 and ranging

between 0.63 and 0.97, Figs 2 & 3). However, AUC values from

SOCC models were consistently lower than AUC values calculated

from reference CBBA models (

 

F

 

1,88

 

 = 376.57, 

 

P

 

 < 0.0001, Fig. 3).

We found that while consistently lower, AUC values for SOCC

models could be easily predicted by AUC values from CBBA

models due to the strong and positive relationship between the two

data sets (

 

r

 

2

 

 = 0.81, 

 

F

 

1,97

 

 = 417.00, 

 

P

 

 < 0.0001). Species distribution

in ecological space had a major role in determining model accu-

racies. Once corrected for prevalence, both SOCC and CBBA

occupancy models showed higher predictive performance when

applied to specialist species (

 

F

 

1,88

 

 = 33.42, 

 

P

 

 < 0.0001, Fig. 3) and

restricted range species (

 

F

 

1,88

 

 = 45.29, 

 

P

 

 < 0.0001, Fig. 3).

We were able to predict up to 46% of the variability in the

differences between SOCC and reference CBBA models with

differences being lower for wide-ranging (

 

F

 

1,85

 

 = 7.99, 

 

P

 

 < 0.01)

and generalist species (

 

F

 

1,85

 

 = 7.65, 

 

P

 

 < 0.01). However, the most

important factors behind differences between the two models

were related to the type and amount of variability explained by

reference CBBA models. In particular, species with a higher

amount of variability explained by spatial variables in CBBA

models showed larger discrepancies between the two occupancy

models (

 

F

 

1,85

 

 = 11.21, 

 

P

 

 < 0.01), whereas these differences decreased

with the amount of variability explained by environmental

variables (

 

F

 

1,85

 

 = 38.10, 

 

P

 

 < 0.0001) (Fig. 4). That is, compared to

reference CBBA models, SOCC models performed relatively

better for generalist, wide-ranging species and for species

showing loose spatial structures and being well modelled with

environmental data.

 

Effects of data availability on SOCC model predictive 
performance

 

Once the significant positive effect of prevalence was taken into

account (

 

F

 

1,86

 

 = 5.95, 

 

P

 

 < 0.01), sample size had a strong impact

on the predictive performance of SOCC models resulting in a

sharp decrease in AUC values at smaller sample sizes (RANDOM

scenario, 

 

F

 

3,258

 

 = 74.206, 

 

P

 

 < 0.0001, Fig. 5). Changes in predictive

performance of SOCC models in relation to sample size were

similar for species with different niche breadth (

 

F

 

3,258

 

 = 0.36,

NS). However, these changes differed according to species range,

since a relative poorer increase in the performance of models

at larger sample sizes was found for wider ranging species

(

 

F

 

3,258

 

 = 4.30, 

 

P

 

 < 0.01, Fig. 5).

The sampling scenario applied to data reduction did not have

any significant global effect on the predictive performance of

SOCC models (scenario RANDOM vs. SELECTIVE, 

 

F

 

1,87

 

 = 3.08,

NS). The increase in predictive performance with sample size was

apparent for the two subsampling procedures (

 

F

 

2,174

 

 = 222.09,

 

P

 

 < 0.0001), and we only detected a minor but significant lower

predictive accuracy of RANDOM scenario models compared to

SELECTIVE scenario models at the subsample of 25% of the data

(

 

F

 

2,174

 

 = 6.08, 

 

P

 

 < 0.01). Therefore, a random subsampling of the

original available data was generally as efficient as a subsampling

procedure that aimed at a more spatially homogeneous distribution

of the monitored sections. We finally compared the predictive

performance of models conducted on 25% of the data (scenarios

RANDOM and SELECTIVE) with a model that used the 3-km

transects and not 1-km sections as analytical units (scenario

EFFORT). Such comparison resulted in a small, but significant

increase in predictive performance of models conducted on

complete 3-km transect data than in disaggregated 1-km section

data (

 

F

 

2,172

 

 = 3.79, 

 

P

 

 < 0.05, Fig. 6).

 

DISCUSSION

 

Spatial data collected in the framework of LTM programs have a

substantial potential for producing species distribution maps

based on habitat suitability modelling. Predictive accuracy of the

models was closely linked to species range size and niche breadth

but also to the available sample size to the modelling exercise

(McPherson 

 

et al

 

., 2004). That is, modelling accuracy of species

distribution was determined by how difficult it was to capture

species responses to environment and by how much data were

available to capture those responses. Hirzel & Guisan (2002),

using a similar approach on a single species, concluded that

sample size was the major single factor behind predictive accuracy

of predictive habitat models and that sampling strategy was in



 

Updating bird distribution using long-term monitoring programs

 

© 2007 The Authors

 

Diversity and Distributions

 

, 

 

13

 

, 276–288, Journal compilation © 2007 Blackwell Publishing Ltd

 

281

 

fact of secondary importance in their case. This is supported by

our results since at a given sample size, predictive accuracy of

random and spatially selective subsets was similar, indicating

that enhancing the spatial representation of the data did not sig-

nificantly contribute to a better model except for smaller samples

sizes. Our results also suggest that disaggregation of field data

sampling units may have a significant positive effect on model

predictive accuracy due, predominantly, to an increase in sample

size.

Predictive accuracy of models conducted on SOCC data ranked

always lower than those conducted in the atlas framework. In the

first place, CBBA models were conducted using a larger sample

size than SOCC models (derived from about 6200 h of sampling

effort for atlas data vs. about 1580 h for SOCC data). This more

extensive sampling effort was probably important in allowing

CBBA models to better capture niche structure for the different

species, especially so for less abundant ones (which is in line with

our finding that predictive accuracy differences in models

Figure 2 Maps showing the predicted distributions of (a) the atlas GLM occupancy model [Catalan Breeding Bird Atlas (CBBA), AUC = 0.91], 
(b) the long-term monitoring data GLM occupancy model [Catalan Breeding Bird Survey (SOCC), AUC = 0.85], and (c) the discrepancies 
between the two methods for one of the species analysed, the coal tit Parus ater. The discrepancy map was created by crossing predicted binary 
presence/absence maps after choosing for each modelling method a threshold maximizing specificity and sensitivity. In (c) black, areas where the 
SOCC model predicted species presence and CBBA model absence. Light grey, areas where CBBA model predicted presence and SOCC model 
absence. Dark grey indicates coincidence in model predictions.
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conducted on scarce and wide-ranging species increase with

sample size, Fig. 5). Second, it should be also stressed that, in

contrast with CBBA models, SOCC models did not include

information about the occurrence of the species in the sur-

roundings (i.e. spatial structure). Since the amount of variability

explained in CBBA models accounted for some of the discrep-

ancy between these and SOCC models, it is probable that the

incorporation of reliable spatial information enhances model

predictive accuracy to some degree. This may be done by model-

ling spatial autocovariables including species spatial information

(Estrada 

 

et al

 

., 2004), by spatial kriging of residuals from

environmental models (Pebesma 

 

et al

 

., 2005) or by explicitly

incorporating spatial information in the model formulation

(Thogmartin 

 

et al

 

., 2004).

We found that ecology plays a critical role in determining

predictive accuracy in models developed with both SOCC and

CBBA models. In particular, wide-ranging species and general-

ists were modelled less accurately than more specialist and

selective species. This result agrees with those of Stockwell &

Peterson (2002), Brotons 

 

et al

 

. (2004), and Seoane 

 

et al

 

. (2005),

who also reported poorer habitat models for either more gener-

alist or abundant species. Stockwell & Peterson (2002) offered as

a biological explanation for this observation that widespread

species often show local or regional subpopulations that differ

in ecological characteristics. Therefore, modelling all these sub-

populations together would effectively overestimate the species

ecological breath and hence reduce model accuracy. Another

potentially simpler explanation is that species described to have

Figure 3 Mean model accuracy for Catalan 
Breeding Bird Survey (SOCC) models and 
Catalan Breeding Bird Atlas (CBBA) reference 
models in relation to species range size and 
niche breadth as estimated from the two 
components of the principal component 
analyses. The two variables are categorized to 
facilitate the interpretation of their 
relationship with predictive model accuracy. 
Whiskers represent the standard error of 
the estimates.

Figure 4 Representation of the main factors 
behind the differences in predictive accuracy of 
Catalan Breeding Bird Survey (SOCC) models 
and reference Catalan Breeding Bird Atlas 
(CBBA) models. The two factors represented 
are the two variables describing the proportion 
of the total variability accounted by either 
environmental or spatial variables 
(see Methods).
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wider distributions or use a wide range of habitats in one area

might not be limited by any of the measured predictive factors at

the scale at which models are fitted. Overall, these results suggest

that limitations caused by species-specific traits associated to

species ecology (i.e. range size and niche breadth) will be difficult

to circumvent by either statistical approaches or increasing sampling

effort and should always be kept in mind when conducting pre-

dictive habitat models for different species (Seoane et al., 2005).

Long-term monitoring programs and spatial 
modelling: perspectives and applications

Given the number of LTM programs currently running in many

countries, application of spatial modelling techniques to these

data may prove a major contributor to conservation and land use

planning in many areas. Spatial mapping of LTM data may sub-

stantially enhance the general efficiency of large-scale biodiversity

assessments by adding a potentially useful spatially explicit com-

ponent allowing accurate representation of species distributions.

Furthermore, spatial mapping from LTM may be integrated in

current projects specifically aimed at mapping species distributions

at large spatial scales. For instance during atlas work periods,

spatial mapping derived from LTM data may become an integral

part of atlas methodology covering more common species. How-

ever, some limitations of habitat modelling such as the difficulty

to account for fine-scale habitat structure should be kept in mind

to enhance proper use of distributions maps derived from LTM

data.

Figure 6 Mean model accuracy for Catalan 
Breeding Bird Survey (SOCC) reference models 
in relation to species range size and to the 
spatial distribution of subsamples in three 
different scenarios using 25% of original SOCC 
section data (RANDOM, SELECTIVE) and the 
combined original 3-km transect data 
(EFFORT). Whiskers represent the standard 
error of the estimates.

Figure 5 Mean model accuracy for Catalan 
Breeding Bird Survey models in relation to 
available sample size RANDOM subsampling 
scenario and species range size. Whiskers 
represent the standard error of the estimates.
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First, many authors consider maps generated by habitat or

niche modelling as equivalent to potential distribution maps

(Guisan & Zimmermann, 2000). Since they rely on the species

responses to environmental gradients, occurrence of the appro-

priate combination of environmental variables is likely to induce

the presence of the species under consideration, but this may not

be always the case. Due to unrecorded environmental variables,

historical reasons, habitat fragmentation, or others, niche modelling

may predict species presences where a given species is certainly

known to be absent. Whereas our models predicted the occur-

rence of most species with high accuracy, some additional steps

may be added to assure that final relative abundance maps corre-

sponded as accurately as possible as real rather than potential

distribution maps (Pearce et al., 2001). A possibility is to filter

out hypothetical occurrence areas for each species from the

known distribution of the species gathered from expert know-

ledge (Pearce et al., 2001) or coarse resolution field atlas data

(Estrada et al., 2004). In fact, LTM data may complement more

traditional mapping approaches which may in turn allow model

refinements leading to a progressive integration between the two

types of surveys (Carrascal et al., 2006).

How to improve monitoring programs to obtain more reliable

distribution maps? From our results we suggest that if used for

mapping purposes based on habitat modelling, LTM should

benefit from the effort aimed at increasing sample size. Such an

increase in sampling effort is also likely to benefit also trend esti-

mation, which is the main aim for which most of them have been

launched. There is, however, a trade-off between the number of

locations possibly sampled and the distance at which they are

located. From our results, we suggest that LTM data based on

long transects or possibly on other methods (i.e. point counts)

may be disaggregated in smaller sampling units, transect sections

in our case, leading to significant increases in the predictive accuracy

of habitat models. The optimal degree of disaggregation to develop

accurate habitat models from LTM data should be further inves-

tigated and is likely to depend on factors such as minimum unit

size, species ecology, and spatial distribution of the sampling

locations. The spatial coverage of the sampling scheme is likely to

be an important factor in many cases and, therefore, improving

this feature should be also favoured. At some point, good spatial

coverage may facilitate the implementation of spatial interpolation

techniques that may increase the predictive accuracy of habitat

models especially for species with loose association with environ-

mental variables. Here also, further investigation of the role that

the spatial component of species distributions plays in the develop-

ment of habitat models is needed (Segurado et al., 2006).

Finally, we have showed that LTM data are well suited for

occurrence data. Occurrence data have been often found to be a

good surrogate of abundance (Pearce & Ferrier, 2001). Since,

LTM programs often collect count or density data, they have the

potential to be used for more informative modelling of abun-

dance data. It is expected that combining presence/absence mod-

elling and abundance models will better fit the data when factors

determining occurrence are different from those determining

abundance. Although, contradictory evidence exists about the

predictive accuracy of abundance models in ecology, many studies

show that at least for a number of species it is possible to model

abundance successfully (Welsh et al., 2000; Pearce & Ferrier,

2001). At least when factors determining occurrence differed to

some degree from those determining abundance, the combining

of presence/absence modelling and abundance models may

result in a better option.
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Appendix 1 Environmental variables (ENV) used to generate habitat suitability models used in the comparison of the Catalan Breeding Bird 
Atlas and the Catalan Breeding Bird Survey data. Unless otherwise mentioned, variables refer to 1 × 1 km squares correspond to means obtained 
from averaging individual values from pixels contained each 1 × 1 km square. Cartographic sources are indicated when necessary.

Descriptor type Variable description [units] Range

Forest

Coniferous forest* 0–400

Esclerophylous forest* 0–397

Deciduous forest* 0–400

Pinus halepensis forest† 0–393

Pinus sylvestris forest† 0–400

Abies alba–Pinus uncinata forest pixels in 1 × 1 km squares† 0–400

Pinus nigra forest† 0–400

Other Pinus forest† 0–394

Quercus suber forest† 0–400

Quercus ilex forest† 0–400

Quercus humilis forest† 0–393

Other deciduous forest† 0–400

Distance to nearest forest patch [log m]† 0–10

Agriculture Dry herbaceous cropland (cereals)* 0–400

Irrigated herbaceous cropland pixels (alfalfa, corn)* 0–400

Dry arboreal cropland (olive tree, almond)* 0–400

Irrigated arboreal cropland (fruit trees)* 0–371

Vineyard* 0–387

Low vegetation cover Scrub* 0–400

Bare ground (rocks)* 0–389

Wetland vegetation* 0–400

Landscape Number of land uses in 1 × 1 km squares (based on land use cover 1997, 1–11

urban and industrial categories clumped)*

Human impact Low density urbanization* 0–379

Distance to cities > 10.000 h [log m]† 0–11

Infrastructure (transport network and urban areas)* 0–400

Distance to main roads of the primary road network [log m]* 0–10

Distance to roads of the secondary road network [log m]* 0–10

Climate Mean solar radiation‡ [10 kjm2/day] 19–896

Mean accumulated summer precipitation (June–September) [l m−2]‡ 50–500

Mean accumulated of mean winter temperatures (December–March) [°C]‡ −50–105

Mean accumulated of mean annual temperatures (January–December) [°C]‡ 0–150

Productivity First PCA factor from NDVI monthly data (April–July)§ −4.1–2.6

Second PCA factor from NDVI monthly data (April–July)§ −4.2–3.4

Topography Mean altitude [m]* 0–2780

Mean slope [degrees]* 0–39

Standard deviation of slope [degrees]* 0–15.2

Distant to rivers [log m]* 3.3–8.8

Geography Mean latitude [degrees]* 2.70–3.80

Mean longitude [degrees]* 45.70–46.50

*‘Institut Cartogràfic de Catalunya’ (ICC).

†‘Departament de Medi Ambient de la Generalitat de Catalunya’ (DAM).

‡‘Centre de Recerca Ecologica i Aplicacions Forestals’ (CREAF).

§NOAA satellite data.
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Appendix 2 Species characteristics used to evaluate the potential of long-term monitoring (LTM) data for spatial modelling. Model accuracy 
as estimated using the area under the ROC curve (AUC). AUC values are shown for reference Catalan Breeding Bird Atlas (CBBA) models 
(Estrada et al., 2004) and for models conducted on LTM data [Catalan Breeding Bird Survey (SOCC) models]. AUC results for SOCC models 
correspond to the best models obtained using 1-km section data for all available transects and evaluated on independent data from the CBBA 
data set. Range size was estimated as the total number of 10 × 10 km UTM squares occupied by the species in Catalonia. Prevalence indicates the 
number of occurrences for each species within the CBBA data set (N = 3077 1 × 1 km UTM squares) and the SOCC data set (N = 684 1 km long 
transect sections). Niche breadth was estimated from species habitat selection patterns in main habitat types derived from 1 × 1 km square data 
(see Estrada et al., 2004 for further details).

Name Range size

Prevalence 

CBBA data

Prevalence 

SOCC data

Niche 

breadth

AUC CBBA 

models

AUC SOCC

models

Acrocephalus arondinaceus 94 132 31 — * 0.89 0.83

Acrocephalus scirpaceus 72 102 60 — 0.93 0.86

Aegithalos caudatus 247 1274 351 0.50 0.82 0.79

Alauda arvensis 144 272 77 0.59 0.88 0.80

Alcedo atthis 74 102 30 — 0.89 0.71

Alectoris rufa 264 710 179 0.42 0.79 0.75

Anthus campestris 82 101 38 0.62 0.82 0.76

Anthus trivialis 64 112 59 0.44 0.91 0.82

Apus apus 251 2045 250 0.48 0.84 0.71

Apus melba 94 352 56 0.58 0.78 0.63

Carduelis cannabina 243 996 207 0.67 0.84 0.77

Carduelis carduelis 296 1812 428 0.44 0.87 0.78

Carduelis chloris 292 1637 407 0.44 0.81 0.72

Certhia brachydactyla 281 1452 420 0.50 0.83 0.74

Cettia cettia 239 751 201 0.44 0.88 0.81

Charadius dubius 84 101 42 — 0.90 0.76

Cisticola juncidis 173 575 141 0.33 0.92 0.85

Clamator glandarius 56 73 28 0.47 0.86 0.67

Columba livia 223 668 144 0.31 0.84 0.77

Columba oenas 108 299 36 0.50 0.86 0.73

Columba palumbus 300 2464 586 0.54 0.82 0.75

Corvus corax 181 645 119 0.56 0.76 0.65

Corvus corone 155 801 167 0.49 0.89 0.83

Corvus monedula 61 120 32 0.37 0.86 0.79

Coturnix coturnix 203 400 125 0.59 0.86 0.81

Cuculus canorus 299 1462 414 0.44 0.82 0.71

Delichon urbicum 290 1019 174 0.38 0.76 0.68

Dendrocopos major 221 763 249 0.41 0.84 0.79

Emberiza calandra 260 1035 215 0.51 0.90 0.87

Emberiza cia 195 719 160 0.47 0.89 0.82

Emberiza cirlus 294 1674 324 0.53 0.83 0.75

Emberiza citrinella 49 79 35 0.43 0.97 0.91

Emberiza hortulana 91 119 37 0.71 0.83 0.76

Erithacus rubecula 266 1734 452 0.56 0.92 0.90

Falco tinnunculus 236 812 175 0.68 0.76 0.67

Fringilla coelebs 251 1540 368 0.52 0.94 0.91

Galerida cristata 225 983 188 0.44 0.90 0.87

Galerida theklae 98 223 24 0.30 0.88 0.84

Gallinula chloropus 159 355 101 — 0.89 0.81

Garrulus glandarius 217 1699 448 0.52 0.86 0.79

Hippolais polyglotta 229 842 249 0.50 0.79 0.72

Hirundo rustica 293 2040 384 0.45 0.86 0.79

Jynx torquilla 203 270 95 0.60 0.74 0.65

Lanius collurio 93 200 59 0.36 0.92 0.88

Lanius meridionalis 92 176 43 0.47 0.82 0.73

Lanius senator 188 532 139 0.27 0.83 0.73

Loxia curvirostra 86 212 54 0.48 0.89 0.85

Lullula arborea 258 914 210 0.67 0.85 0.78
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Luscinia megarhynchos 297 2039 481 0.54 0.88 0.81

Melanocorypha calandra 26 43 30 0.29 0.98 0.93

Merops apiaster 213 1114 233 0.45 0.85 0.79

Monticola solitarius 135 251 42 0.43 0.85 0.83

Motacilla alba 244 990 243 0.58 0.77 0.67

Motacilla cinerea 169 369 85 0.61 0.83 0.71

Muscicapa striata 166 354 109 0.48 0.72 0.67

Myiopsitta monachus 28 38 45 — * 0.99 0.93

Oenanthe hispanica 107 312 43 0.20 0.93 0.88

Oenanthe oenanthe 63 121 70 0.26 0.97 0.88

Oriolus oriolus 273 983 317 0.50 0.77 0.69

Parus ater 200 853 210 0.55 0.91 0.89

Parus caeruleus 277 1591 413 0.50 0.86 0.79

Parus cristatus 248 1213 335 0.63 0.84 0.80

Parus major 305 2436 563 0.58 0.83 0.83

Passer domesticus 300 1994 419 0.43 0.88 0.84

Passer montanus 186 724 217 0.34 0.89 0.82

Petronia petronia 149 207 40 0.57 0.74 0.70

Phaisanus colchicus 55 50 34 — 0.84 0.79

Phylloscopus bonelli 272 1288 293 0.51 0.87 0.76

Phylloscopus collybita 207 731 289 0.46 0.88 0.79

Pica pica 237 1294 316 0.40 0.91 0.84

Picus viridis 290 1379 388 0.62 0.72 0.66

Prunella modularis 77 254 88 0.41 0.96 0.96

Ptyonoprogne rupestris 177 426 47 0.57 0.86 0.78

Pyrrhocorax pyrrhocorax 22 232 45 0.40 0.95 0.86

Pyrrhula pyrrhula 79 269 77 0.44 0.95 0.90

Regulus ignicapilla 238 1066 328 0.52 0.88 0.83

Regulus regulus 47 124 41 0.37 0.98 0.96

Remiz pendulinus 68 135 38 0.31 0.96 0.88

Saxicola torquatum 283 1159 296 0.52 0.74 0.70

Serinus citrinella 53 153 47 0.38 0.96 0.94

Serinus serinus 307 2334 547 0.47 0.90 0.79

Sitta europaea 126 374 111 0.51 0.90 0.87

Streptopelia decaocto 192 409 180 0.30 0.88 0.81

Streptopelia turtur 241 1161 236 0.51 0.81 0.73

Sturnus unicolor 180 519 93 0.38 0.87 0.70

Sturnus vulgaris 251 1303 294 0.42 0.87 0.81

Sylvia atricapilla 282 1702 491 0.50 0.82 0.77

Sylvia borin 141 215 97 0.50 0.78 0.66

Sylvia cantillans 221 894 235 0.53 0.87 0.76

Sylvia hortensis 112 149 37 0.68 0.82 0.74

Sylvia melanocephala 241 1512 360 0.46 0.93 0.89

Sylvia undata 193 435 107 0.63 0.86 0.77

Tetrax tetrax 22 57 33 0.26 0.97 0.97

Troglodytes troglodytes 271 1566 402 0.54 0.87 0.81

Turdus merula 308 2614 599 0.56 0.89 0.81

Turdus philomelos 223 841 275 0.50 0.84 0.78

Turdus torquatus 42 95 26 0.36 0.98 0.97

Turdus viscivorus 245 1038 259 0.66 0.79 0.73

Upupa epops 267 1297 291 0.47 0.82 0.74

*Niche breadth for water birds and invasive species was not available due to biases derived from the habitat categories used.

Name Range size

Prevalence 

CBBA data

Prevalence 

SOCC data

Niche 

breadth

AUC CBBA 

models

AUC SOCC

models

Appendix 2 continued.


