
Revista Catalana d’Ornitologia 24:88-99, 2008

Filling the gaps: using count survey data
to predict bird density distribution patterns
and estimate population sizes

Henk Sierdsema & E. Emiel van Loon

Birds play an increasingly prominent role in politics, nature conservation and nature

management. As a consequence, up-to-date and reliable spatial estimates of bird distributions

over large areas are in high demand. The requested bird distribution maps are however not

easily obtained. Intensive fieldwork over a spatially dense observation network requires a large

effort by hundreds or thousands of volunteers, and is only feasible once in every few decades.

Therefore, to create distribution and abundance maps at shorter time intervals of years or

even months, monitoring data has to be used. However, monitoring data typically come from

a spatially less dense observation network. In order to produce reliable distribution maps with

these data, additional biological knowledge and relatively complex statistical procedures have

to be used. This study explains the several steps and issues involved via a case study where

distribution maps of the Common Buzzard are constructed for The Netherlands.
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Birds play an increasing role in politics, nature

conservation and nature management. Many

species are of conservation concern and pro-
tected through national and international laws

and agreements. Therefore, the consequence of

projects like the construction of roads or build-
ings on bird distribution and abundance must

be assessed. In addition, issues like climate-

change, pollution and the increasing distur-
bance by traffic have to be addressed to esti-

mate their consequences on bird populations.

Estimates of population sizes form an important
tool in national and international or regional

policies. The selection of, for example, Red List

Species, Habitat directive species or 'target spe-
cies' is for a major part based on population es-

timates. With the increasing influence of these

lists in society, reliable and reproducible esti-
mates are becoming increasingly necessary.

In the aviation world a special relationship

exists between people and birds. Planes can dis-

turb birds, but more importantly, birds often col-

lide with planes. Sometimes it causes a plane to

crash, resulting in loss of human life (Thorpe
2003), but most often bird collisions just cause

damage, leading to huge costs for repair and

time-consuming inspections (Barras & Wright
2002; Dolbeer et al. 2000). In order to prevent

collisions with birds, hazardous situations invol-

ving big birds or large numbers of birds should
be avoided (Dolbeer & Eschenfelder 2003).

Therefore, we would like to know when and

where these kinds of situations can be expected.
Nationwide mapping of bird distribution or

abundance are not easy to obtain. They require

intensive fieldwork of hundreds or thousands
of volunteers and can only be carried out every

few decades. Only a small number of rare or

aggregated species can be monitored on a na-
tional scale every year, let alone every month.

For other species, we therefore have to rely on

information obtained at a small sample of moni-
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toring sites. Since these sites obviously cover

only a fraction of the area of interest, a method
is needed to fill in the gaps between the sites if

we want to create distribution maps or estimate

population sizes from these observations.
In this paper we present a method that can

be used to create distribution maps from sam-

ple data. Results will be presented for one spe-
cies with moderate conservation concern and

large impact on flight safety, the Common Buz-

zard Buteo buteo. This widespread species is of
moderate conservation concern because of its

vulnerability to pesticides like DDT and local

persecution. It is also one of the bird species
that pose a great hazard to aviation and has been

involved in hundreds of reported bird strikes in

Europe (Dekker et al. 2003). The numbers of
breeding and wintering Buzzards in The Nether-

lands have increased considerably in the last 20

years. At the beginning of the 21st century the
number of wintering Buzzards is about twice as

high as in the mid-eighties (Sierdsema et al.

1995; Boele et al. 2005) (Figure 1). There are
however no nationwide maps available of the

distribution in the winter period since the com-

pletion of the year-round atlas project in 1983
(SOVON 1987). There is for the reasons men-

tioned previously a need for recent detailed

maps of the distribution and abundance of Buz-
zards in The Netherlands. The aim of this pa-

per is to show how spatial statistics can be ap-

plied to create detailed maps of distribution and

abundance from monitoring data of wintering

Buzzards.

Materials and methods

Spatial statistics

A large number of techniques can be used to

determine the expected number of birds at un-

sampled locations, each having its specific ad-
vantages and disadvantages. In our study, we

use a combination of regression and a statisti-

cal interpolation.
It is generally acknowledged that the most

suitable techniques for the non-spatial statisti-

cal modelling of abundance data are General
Linear Models (GLM’s), General Additive Mo-

dels (GAM’s) and Artificial Neural Networks

(ANN’s) (Guisan & Zimmermann 2000). The
selection of the proper statistical distribution

and the inclusion of the key factors or 'forcings'

that influence the distribution and abundance
of birds are often critical in being able to detect

existing relationships.

In statistics, observed data area usually trea-
ted as having a deterministic component and a

noise (or error) term:

yi=µ +ei

where µ is the expected (or mean) value of yi

and ei is the random error term or residual. In

practice, a large part of ei is not random but is a

reflection of model imperfections, scale and sam-
pling issues. We do treat it as random however

because we cannot explain or understand its

variation. Different observations i are assumed
to be independent. This implies that there is no

structure in the error with respect to i. In prac-

tice though, observations that are taken close
together in space or time are more alike than

distant observations and this leads to spatial or

temporal dependence between observed data.
When the goal is spatial interpolation, informa-

tion is typically required on a high spatial reso-

lution and therefore spatial dependence within
the data is likely to occur. In this case, spatial

dependence can be exploited to let an observa-

tion be more informative about its direct sur-
rounding than distant observations. Spatial sta-

tistics (Cressie 1991) is the field of statistics that

Figure 1. Index of wintering Common Buzzards in

The Netherlands (1980=100). Since the mid-eighties

the numbers have doubled.

Índex dels aligots comuns hivernants a Holanda
(1980=100). Des de mitjans dels anys vuitanta el
nombre d’aligots s’ha duplicat.
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explicitly addresses spatial locations of obser-

vations and that tries to use spatial structure in
order to get optimal, location specific predic-

tions or interpolated values (Pebesma et al.

2000).
Spatial interpolation describes the spatial

structure in the data without the use of other

explanatory variables. Examples of the methods
used for spatial interpolation are inversed distance

weighting (IDW), moving window-methods

(Osborne et al. 2001) and kriging (Cressie 1991;
Pebesma & Bio 2002). The name kriging refers

to a widely used method for interpolating and

smoothing spatial data. Given a set of observa-
tions yi, i = 1,…, n, at spatial locations si, the

kriging predictor for the underlying spatial sur-

face, , takes the form:

where the kriging weights wi are derived from the
estimated mean and covariance structure of the

data. Therefore an equation, the (semi)vario-

gram, is fitted to describe the spatial correla-
tion in the data. Kriging was originally devel-

oped for the mining industry to infer the spatial

distribution of valuable minerals based on dis-
tant samples. It has since the 1980s been wide-

ly applied in the natural sciences (notably soil

science, oceanography and meteorology). Spa-
tial interpolation of observations implies that

we estimate unobserved, unknown quantities

from observed data. For this we need methods
that allow us to assess the accuracy of the esti-

mate by providing a measure of estimation er-

ror. Kriging can provide such an uncertainty
estimate.

There is some overlap between (non-spa-

tial) regression models and spatial interpolation
(kriging) methods.

In regression models, spatial trend data like

e.g. x- and y-coordinates can be added as varia-
bles, while spatial interpolation models can be

extended with landscape data. The two methods

can also be combined loosely by a method
known as regression kriging. This method models

the relation between independent variables and

bird densities with regression, while the spatial
structure in the errors of the regression is model-

led by kriging (Hengl et al. 2004; Pebesma et al.

2000). The general form of regression kriging
can be described with

where

describes the regression part with variables Vk

and βk regression parameters for these variables
and

describes the spatial interpolation of the errors

ε of the regression model. The regression coef-
ficients are estimated from the observations us-

ing weighted least squares. The kriging weights

wi are derived from the variogram of the residu-
als. The corresponding kriging variance incor-

porates the uncertainty about the estimation of

the regression coefficients. If the regression
model is linear with Gaussian errors, the terms

kriging with external drift or universal kriging

is used instead of regression kriging (Hengl et
al. 2004; Leopold et al. 2006).

Materials

Bird data

In The Netherlands a large number of monitor-
ing schemes monitor almost all the bird species

that occur at various periods of the year. Data

are collected on sample sites with natural
boundaries or on sample points. Monitoring of

Dutch bird populations forms part of a govern-

mental monitoring scheme that includes other
organisms. These projects aim to detect changes

in the natural environment, both in terrestrial

and aquatic habitats. Coordination of fieldwork
and data processing is mainly carried out by non-

governmental organisations like SOVON Dutch

Centre for Field Ornithology, in collaboration
with Statistics Netherlands. About 3000 volun-

teers and a small group of professional ornitho-

logists carry out fieldwork for bird monitoring
schemes.

One of these monitoring projects is the Point

Transect Count. Since 1978, monitoring of
mainly terrestrial wintering birds has been car-

ried out annually along about 400 transects with

20 observation points each. Over 1000 transects
have been monitored since the start of the

project. Observers are requested to count all
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species at each point during exactly 5 minutes

(Sierdsema et al. 1995). Initially, counts were
made in November, December, February and

August, but after an evaluation of the results in

1997, it was chosen to continue only the count
in the 2nd half of December. Since 1978, more

than 20 000 points have been counted. From

over 16 000 points the exact location is known
and digitised. For the year 2000, over 8000 data

points were available.

During fieldwork no distinction is made be-
tween sedentary and flying birds. There is also

no limit set to the distance within which birds

are counted nor are distance bands used. This
is a minor problem in the establishment of

trends, but a major difficulty in the establish-

ment of densities. Therefore in 2001 part of the
observers was asked to count bird numbers with-

in and over a 200 meter band and to distinguish

between sedentary birds and birds flying over.
This made it possible to estimate the percen-

tage of Buzzards within a 200-meter radius from

the survey point (56%) and Buzzards flying over
(2%). Even within the 200-meter radius, not

all existing Buzzards will be observed during the

5-minute survey. The observed numbers are
therefore a relative measure of abundance.

However, since the Buzzard is a large bird and

easily observed in winter time, we assumed that
the number of observed Buzzards within this

200-meter radius is a reliable reflection of the

absolute number of birds.
To illustrate the various methods to create

distribution maps from count survey data, one

species, the Common Buzzard, was selected (see
also Section 1). Original counts of each year

for the month of December were used. The fi-

nal predictions of the number of birds per
square kilometre were calculated by multiply-

ing the predicted number per point with 7.96

(1 km2 divided by the area of a circle with 200
m radius). Results of the models for the counts

in December 2000 are described in detail in this

paper.

Landscape data

Based on literature a number of variables were
selected that are known to influence the distri-

bution of Buzzards and for which maps with

complete coverage for the Netherlands exist. A
total of 20 variables were tested: two times 8

land-use variables derived from the 1:10 000

topographical map of the Netherlands (Topo-

grafische Dienst, Emmen), openness of the
landscape (Alterra), physical geographical

regions (or bioregions) and snow and ice cover

(table 1). For the land-use variables both the
area in a circle of 0-200 m and 200-1000 m

around each point was used. For large-scale spa-

tial trends, like an increase in densities from the
west to the east of the country, the x- and y-

coordinates were used.

Statistical analyses

Statistical modelling

A regression model (General Additive Model,

'GAM') was built for each separate year of the

number of Buzzards per sample point in the
December-count. The Poisson-distribution,

with a log link, was selected in the modelling

procedure for the following reasons: (1) the
number of Buzzards per point is always positive

(2) many points contain zeros (3) variance in-

creases with increasing abundance. The disper-
sion parameter, describing over- or under-dis-

persion of the counts, was estimated from the

residual deviance. Variables were selected by fit-
ting all possible regression models and evalua-

ted according to the Cp-criterion of Mellows

for goodness of fit with the RSEARCH -com-
mand within GENSTAT 7 (Rothamsted-Exper-

imental-Station 2003). Most variables were ad-

ded as linear predictors. Openness of the
landscape was added as a 3rd-degree smooth-

ing spline, the coordinates as a 4th degree

smoothing spline. As an indication of the vari-
ance explained by the regression model, the

percentage of explained mean deviance was

used. The deviance depends on the number of
positive observations and is not a direct mea-

sure of fit, nevertheless it can be used to com-

pare models of different complexity applied to
the same data (Pebesma et al. 2000). The best

fitting model predictions and standard errors

were calculated at a 1 km2 resolution for The
Netherlands. These predictions were mapped

with the Geographical Information System Arc-

GIS (ESRI).

Spatial interpolation

Ordinary kriging was chosen to perform spatial
interpolation. It was carried out with the soft-

ware GSTAT (Pebesma and Wesseling 1998)
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(see also, www.gstat.org). First, for each year, a

semivariogram was calculated that describes the
spatial relationship in the observations (Cres-

sie 1991). With this semivariogram numbers in

kilometre-squares without counts were interpo-
lated from squares with counts by means of or-

dinary kriging. Variances were also calculated

per square kilometre and saved.

Regression kriging

Regression kriging was carried out in two steps.
First a regression model (GAM) as described

before was fit and predictions for all data-points

were calculated. Then the difference between
the counts and the predictions ('simple' or 're-

sponse' residuals) was calculated by subtracting

the fitted values from the data.
These residuals were spatially interpolated

with ordinary kriging, resulting in a 1 km2 map

with complete coverage for the Netherlands of
the residuals. This method differs from the gen-

eral method as described in the introduction:

instead of solving one equation the process has
been separated in two separate steps. We have

chosen this method because the combination

of GAMs and kriging is not possible yet in the

available software (GSTAT) and is very com-

putationally intensive with other software.
Maps for the Buzzard densities were finally

obtained by adding the estimated trend from the

GAM to the predicted value of the residual. The
predicted variance was approximated by add-

ing the variance of the GAM to that from krig-

ing (Odeh et al. 1995; Pebesma et al. 2000).

Estimate of population size

A national or regional estimate of the popula-
tion size was obtained by summing the predict-

ed numbers per km2 from the interpolated map

as predicted by the regression kriging.

Results

Statistical model: regression

Significant predictors (variables) included in the

regression model for Common Buzzard counts

in December 2000 are summarized in Table 1.
This model explains 14.8% of the variation in

Buzzard numbers per point. The selected pre-

dictors for the other years are in most cases the

Figure 2. Number of observed Common Buzzards per sample point in December 2000 with detail for the

central Netherlands

Nombre d’aligots comuns observats per unitat de mostratge al desembre del 2000 amb detall pel centre
d’Holanda.
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same. The amount of explained deviance var-
ied from 13% to 16% in the years 1978-2003.

In all years physical geographical region (FGR)

and spatial trend (x- and y-coordinates) were
significant. In general, a positive relationship

was found with the amount of arable land and

grassland with comparable regression coeffi-
cients and a negative relationship with built-up

area, open water and forest. In most models,

either land use within a 200 m radius or a buff-
er of 200 to 1000 meters was included in the

model. For small water bodies and built-up are-

as though, both distances were included. Ice,
snow and openness of landscape had a signifi-

cant influence in a limited number of years. In

2000, ice and snow had a significant negative
influence (Table 1).

The residuals of the model of 2000 are

shown in Figure 3. Figure 4 shows the results of
the predicted number of Buzzards per Km2.

Spatial interpolation: kriging

All semivariograms found were of the exponen-

tial form and are expressed as:

a Nug (0) + b Exp (c) .

In this expression c is the range parameter, b

the sill (the steepness of the curve) and a the

Table 1. Regression model (GAM) of wintering Common Buzzards in 2000 (FGR: Physical geographical region;

Ice & Snow: coverage of ice and snow; X & Y: X- and Y- coordinates; other variables: amount of land use

types within 200m and 200-1000 from sample point).

Model de regressió (GAM) dels aligots comuns hivernants l’any 2000 (FGR: Regió fisiogràfica); gel i neu:
cobriment de gel i neu; (X,Y): coordenades x,y. D’altres variables: quantitat de l’ús del territori dins dels 200
m i de 200-1000 m del punt de mostratge).

Variable Estimate s.e. t-value p-value

FGR 298.74 19.92 23.50 < 0.001

Ice 11.33 5.66 6.68 0.001

Snow 8.62 4.31 5.08 0.006

X 0.0000070 0.00000081 8.62 < 0.001

Y -0.0000032 0.00000085 -3.82 <.001

Arable-1000m 0.0026 0.00094 2.79 0.005

Grassland-1000m 0.0026 0.00095 2.73 0.006

Small waterbody-200 m -0.086 0.030 -2.88 0.004

Small waterbody-1000 m -0.0039 0.0017 -2.24 0.025

Large waterbody-200 m -0.094 0.047 -2.01 0.044

Built up –200 m -0.16 0.030 -5.27 < 0.001

Built up –1000 m -0.0080 0.0015 -5.27 < 0.001

Forest –200 m -0.067 0.022 -3.11 0.002

Figure 3. Counts of Common Buzzards (left) and residuals (right) of the regression model for 2000.

Comptatges d’Aligot Comú (esquerra) i els seus residus (dreta) del model de regressió per a l’any 2000.
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size of the nugget ('short distance noise'). The

expression for the year 2000 was:

0.2 Nug(0) + 0.25 Exp (800)

Figure 5 shows the result of the spatial interpo-

lation of the counts with ordinary kriging and

the variance of these interpolations. There are
large regions with a relative high variance.

These regions are mainly coinciding with regions

with a low density in observation points (Fig-
ure 2). This implies that the reliability of the

interpolated numbers is lower in areas with low

observation density.

Regression kriging

The residuals of the regression model are spa-

tially correlated. The semivariogram for the re-

siduals of December 2000 was

0.211986 Nug(0) + 0.211462 Exp(944.318)

This spatial correlation is for example quite clear

in the centre of the Netherlands (Figure 6). This

region shows areas where adjacent points show
over-prediction (blue) and under-prediction

(red) by the regression model. By spatially in-

terpolating the residuals, distinct regions with
higher or lower numbers of counted Buzzards

than predicted by the regression model can be

seen (Figure 7). Finally, the spatially interpolat-
ed residuals and the predicted distribution of

the regression model were combined in one

map. This results in the final prediction for
December 2000 (Figure 8).

Comparison of the resulting map of the pre-

dictions of the regression model (Figure 4) and
the spatially interpolated map shows a fair

amount of concurrence (Figure 5). There are,

however, a number of areas showing important
differences between the two maps. In the map

as produced by the combination of the two

methods (Figure 8), results of the two approach-
es are combined. This results in a map with a

large amount of detail, mainly due the output

of the regression model, and regions with rela-
tively high or low numbers that cannot be ex-

plained by the variables included in the regres-

sion model due to spatial interpolation of the
residuals.

Estimate of population size

For the second half of December 2000 the pop-

ulation of wintering Buzzards in the Netherlands
was estimated to be c. 45000 – 56000. This range

reflects the range in the estimate of the number

of Buzzards within a 200-radius from the count-
ing point and does not reflect the variance in

the models. This total number is about twice as

high as the estimate for the beginning of the
eighties as produced by the year-round atlas for

the Netherlands (SOVON 1987) and in agree-

ment with the general trend (Figure 1).

Trend mapping

The increase in the number of Common Buz-

zards in the Netherlands (Figure 9) is reflected

in an overall increase of densities all over the
Netherlands. Most regions that held reasona-

ble numbers in the mid-eighties show a large

increase in densities. Most striking is the in-
crease in the southern part of the Netherlands

where Buzzards were quite scarce in the mid-

eighties. This increase in the southwest shows
a time lag as compared to the northeastern parts

of the country. In the western part of The Nether-

Figure 4. Number of Common Buzzards per sq. km.

in 2000 as predicted by the regression model.

Nombre d’aligots comuns per quilòmetre quadrat l’any
2000 predit pel model de regressió.
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lands, wintering Buzzards are still far from com-
mon, but also increasing.

Discussion

In this paper we show that monitoring data are
a valuable source of information to create dis-

tribution maps. With the aid of spatial statistics

these sample date can be interpolated to maps
with full spatial coverage. These maps can easi-

ly compete with modern distribution maps of

bird atlases, and can be produced with very short
time intervals in comparison to distribution at-

las projects. The drawback, however, is that

these maps approximate real distributions and
predictions. In areas with low sample densities

(and often high variances) they should be used

with care. Since the described method of mon-
itoring wintering birds delivers relative measures

of abundance, transformations are needed to

estimate absolute abundances. In this paper, only
an estimate has been used of the percentage of

birds within a circle of 200 m. We assumed that

this number is a reliable estimate of the abso-

lute numbers. This may be reasonable for a con-
spicuous bird like the Common Buzzard, but not

for many other species. Since most of the cur-

rent monitoring programmes produce relative

Figure 5. Ordinary kriging spatially interpolated map of counts of Common Buzzards in December 2000

(left) and kriging variance (right).Dark areas in the variance map denote areas with relatively high variance.

Mapa de punts de comptatge d’interpolació espacial “kriging” normal de l’Aligot Comú el 2000 (esquerra) i
variança “kriging” (esquerra). Les àrees fosques en el mapa de variança denoten les àrees amb alta variança
relativa.

Figure 6. Section of the central Netherlands showing

the simple residuals per observation point (filled

squares: more birds than predicted by the model,

filled circles: fewer birds than predicted).

Secció del centre d’Holanda que mostra els residus
per punt d’observació (quadrats plens: més aus que
en els predits pel model; cercles plens: menys aus
que en els predits pel model).
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numbers of abundance statistical procedures are

required to upgrade these numbers to absolute

ones. In northern America, there is an active
debate on this topic and we will have to solve

this problem before abundance maps for all or

parts of Europe can be produced from monitor-
ing data (Kery et al. 2005; Royle 2004). Anoth-

er issue that has to be dealt with should be the

reliability of the counts themselves. Since the
counts are prone to error, the magnitude of these

errors should be included in the variance of the

final map. Pebesma et al. 2000 gives an example
of the inclusion of errors of counts of see birds

in a spatial interpolation.

In this paper, a relatively straightforward
method is described to create interpolated maps

from sample data. Although the Poisson distri-

bution is suitable for the description of the bird
data, other distributions may also be well suit-

ed. These are for example the negative binomi-

al distribution or mixed models. These distribu-
tions require often more parameters (like the

aggregation-factor k in the negative binomial

distribution) that are not straightforward to ob-

Figure 7. Spatially interpolated map of the simple residuals (n/km2) of December 2000 for the Netherlands

(left) and detail for the central Netherlands (right) (black: less birds observed than predicted, grey: more

birds observed than predicted).

Mapa espacial interpolat de residus simples (n/km2) de desembre 2000 per a Holanda (esquerra) i detall del
centre d’Holanda (dreta) (negre: menys aus que en el predit pel model; gris: més aus que en el predit pel
model).

tain and can lead to worse results if not estimat-

ed properly. In our study, the counts data were

not transformed prior to regression kriging. It
can however be advantageous to consider data

transformations in some cases. The ordinary

kriging technique as applied to the residuals as-
sumes normality. While in this study there was

no sign that this assumption was violated, it may

be a problem in other situations. With other
methods it is possible to relax the restrictions of

ordinary kriging (Diggle et al. 1998). A problem

with our regression kriging method is that no
satisfactory variances can be calculated. We es-

timated the variance by simply adding up the

variance of the regression part and the kriging
part, but this probably leads to an overestima-

tion of the error of the models. (Odeh et al. 1995;

Pebesma et al. 2000). It is better to carry out the
Poisson regression kriging in one simulation

process instead of two separate ones. There are

software tools available to perform this kind of
modelling like WINBUGS (Link et al. 2002) and

R-libraries like GeoR and GeoRglm (www.r-

project.org). With the increase of the number
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of data points, however, the calculation time
increases exponentially and still forms a real

problem with large datasets like that of the Buz-

zard-example in this paper.
The explained deviance of the models is

rather low. This is no surprise since the sample

size of each point is small compared to the den-

sity and land use of the birds. On a vast major-
ity of the points only 0, 1 or 2 Buzzards were

seen. Due to the small size of the points many

suitable points will just by chance have no Buz-
zards. The estimates for individual points may

therefore be rather poor, but much better when

looking at a larger scale (like blocks of one km2).
In general, R-squared and explained deviance

should only be used to compare comparable

models and not as a direct measure of model
performance: rescaling of the values and chang-

es of the slope can lead to large differences of

R-squared. Despite the small percentage of ex-
plained deviance, most of the variables that

entered the regression models are highly signif-

icant. This is mainly due to the large size of the
dataset: over 6000-8000 points per year.

The combination of monitoring data and

statistical interpolation statistics makes it pos-
sible to map trends: we can now see how the

distribution and abundance changes over times

with much shorter time intervals than is possi-
ble with nationwide bird atlas projects. Series

of maps show that the increase in numbers may

not be equal all over the country, but time-
lagged in some areas. Although from the cur-

rent models it might be concluded that the west-

ern part of the Netherlands is not, or is less,
suitable for wintering Buzzards, the current dis-

tribution might reflect the historic distribution.

If that is the case, a further increase in numbers
in the west of the country may be expected.

Figure 8. Final map of the distribution of Common

Buzzards in December 2000 as a result of regression

kriging.

Mapa final de la distribució de l’Aligot Comú el
desembre de 2000 com a resultat de la regressió
“kriging”.

Figure 9. Predicted distribution of Common Buzzards in December 1985, 1990 en 1995. The increase in

numbers was time-lagged in the southwest of the country as compared to the northeast.

Distribució predita de l’Aligot Comú el desembre de 1985, 1990 i 1995. L’increment d’individus va tenir un
desfasament al sud-oest del país en comparació al nord-est.
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This study has shown that spatial statistics

are a valuable tool to extend the use of bird
monitoring of wintering Buzzards in the Nether-

lands from trend calculations to detailed distri-

bution maps. The methodology we outlined can
easily be generalized to other types of monitoring

data or other species. However, if we want to

produce similar maps on a European scale, data
from different monitoring projects have to be

made comparable first. Further steps have to be

taken to integrate as much of our biological
knowledge about the bird behaviour and

movement with deterministic or statistical

models, after which a statistical interpolation
can be performed. Parallel to this, research to

establish both empirically and theoretically the

uncertainty in the various spatial predictions is
required in the future.
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Resum

Omplint els buits: l’ús de dades de

programes de seguiment per predir les

pautes de distribució de densitat i

estimes poblacionals

Els ocells juguen un paper cada vegada més impor-

tant en la política, la conservació i la gestió de la

natura. Com a conseqüència d’això, és necessària una

estimació espacial actualitzada i fiable de les distribu-

cions de les aus per a grans àrees. Els mapes de dis-

tribució requerits per a això no són fàcils d’obtenir.

Un treball de camp intensiu sobre una xarxa espa-

cial densa requereix un gran esforç de centenars o

milers de voluntaris, i només és factible una vegada

cada poques dècades. Per crear els mapes

d’abundància i distribució a intervals més curts d’anys

o fins i tot mesos, es necessiten dades de seguiment.

No obstant això, les dades de seguiment tenen una

estructura espacial poc densa. Amb la finalitat de

produir mapes de distribució fiables amb aquestes

dades, s’ha d’usar informació biològica addicional i

procediments estadístics relativament complexos. En

aquest article s’expliquen els diversos passos i qües-

tions necessaris que requereix un estudi on es cons-

trueixen uns mapes de distribució de l’Aligot Comú

Buteo buteo per a tota Holanda.

Resumen

Rellenando los huecos: uso de datos de

programas de seguimiento para predecir

las pautas de distribución de densidad y

estimas de tamaños de población

Las aves juegan un papel cada vez más prominente

en la política, la conservación y la gestión de la natu-

raleza. Como consecuencia de ello, es necesaria una

estimación espacial actualizada y fiable de las distri-

buciones de las aves para grandes áreas. Los mapas

de distribución requeridos para ello no son fáciles de

obtener. Un trabajo de campo intensivo sobre una

red espacial densa requiere un gran esfuerzo de cien-

tos o miles de voluntarios, y sólo es factible una vez

cada pocas décadas. Para crear los mapas de abun-

dancia y distribución a intervalos más cortos de años

o incluso meses, se necesitan datos de seguimiento.

Sin embargo, los datos de seguimiento tienen una

estructura espacial poco densa. Con el fin de produ-

cir mapas de distribución fiables con estos datos, se

debe usar información biológica adicional y procedi-

mientos estadísticos relativamente complejos. En

este trabajo se explican los diversos pasos y cuestio-

nes necesarios que requiere un estudio donde se cons-

truyen unos mapas de distribución del Ratonero

Común Buteo buteo para toda Holanda.
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